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COMPUTING THE DISTRIBUTIONS OF ECONOMIC MODELS
VIA SIMULATION

BY JOHN STACHURSKI AND VANCE MARTIN1

We study a Monte Carlo algorithm for computing marginal and stationary densities
of stochastic models with the Markov property, establishing global asymptotic normal-
ity and OP(n−1/2) convergence. Asymptotic normality is used to derive error bounds in
terms of the distribution of the norm deviation.
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1. INTRODUCTION

WHEN ANALYZING THE DYNAMICS of economic and econometric models, one
often wishes to study the marginal and stationary distributions associated with
the vector of state variables. For many models no closed form solution for these
distributions exists, and numerical methods form the main bridge to quantita-
tive applications. This paper studies one such method, proposed first by Glynn
and Henderson (2001).

The problem can be introduced as follows. Let X ⊂ R
k and let p : X×X → R

be a density kernel on X. That is, p is jointly measurable and p(x� y)dy is a
density on X for each x ∈ X. Taking X1 as given and recursively drawing

Xt+1 ∼ p(Xt� y)dy (t ≥ 1)

yields a discrete time Markov process (Xt)t≥1 on X.2 It is well known that for
such a process, the (marginal) distribution of Xt can be represented by a den-
sity ψt on X and, moreover, the sequence (ψt)t≥1 satisfies

ψt+1(y)=
∫
p(x� y)ψt(x)dx (y ∈ X� t ≥ 1)�(1)

Furthermore, a density ψ∞ on X is called stationary for the kernel p if

ψ∞(y)=
∫
p(x� y)ψ∞(x)dx (y ∈ X)�(2)

1This project has benefited from the comments of Peter Glynn, Shane Henderson, Sean Meyn,
Kazuo Nishimura, Yoshihiko Nishiyama, Roberto Raimondo, a co-editor, an anonymous referee,
and participants at the 12th International Conference on Computing in Economics and Finance,
Cyprus 2006.

2Given X1 and p, such a process (Xt)t≥1 exists on some probability space (Ω�F�P). Con-
versely, given a model which defines the random process (Xt)t≥1 directly, let p(x�dy) be the
conditional distribution of Xt+1 given Xt = x. We require that p(x�dy) can be represented by a
density p(x� y)dy for all x ∈ X.
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It is an equilibrium in the sense that if X1 ∼ψ∞, then Xt ∼ψ∞ for all t, and in
fact one can show that (Xt)t≥1 is (in the strict sense) stationary.

In this paper, we study how to compute numerical approximations to ψT
(for some given T ∈ N) and ψ∞ when analytical expressions are unavailable.
Previously a number of techniques have been suggested, including (i) dis-
cretization and (ii) simulation combined with histograms or nonparametric
kernel density estimates. In what follows we analyze an alternative simulation-
based technique which is both intuitively simple and computationally effi-
cient.

To compute ψT , Glynn and Henderson (2001) proposed the marginal density
look ahead estimator (MDLAE) defined by

ψnT (y) := 1
n

n∑
i=1

p(Xi
T−1� y) (y ∈ X)�(3)

where (Xi
T−1)

n
i=1 is n independent draws of the lagged state XT−1. The intuition

behind the estimator is straightforward: In view of (1) we have Ep(XT−1� y)=
ψT(y). As ψnT (y) in (3) is by definition the sample mean of independent
observations of p(XT−1� y), it follows that ψnT (y) is unbiased and consis-
tent for Ep(XT−1� y) = ψT(y). Moreover, when Ep(XT−1� y)

2 is finite, the
central limit theorem (CLT) implies that ψnT (y) is also

√
n-consistent for

ψT(y).3

The following example helps illustrate how ψnT can be constructed in appli-
cations. Consider a model of the form

Xt+1 = μ(Xt)+ΣUt+1� (Ut)t≥1
IID∼ N(0� Ik)�(4)

where Γ := ΣΣ	 has positive determinant. The corresponding density kernel
(i.e., conditional density of Xt+1 given Xt = x) is

p(x� y) := 1
(2π)k/2|Γ |1/2

(5)

× exp
{
−1

2
(y −μ(x))	Γ −1(y −μ(x))

}
�

3In comparison, the nonparametric kernel density estimator generated from observations of
XT is biased and the error isOP((nδkn)

−1/2), where δn → 0 is the bandwidth and k is the dimension
of X (Yakowitz (1985)). The intuition behind the superior performance of the MDLAE is that the
conditional densityp in (3) subsumes the role of the kernel in the nonparametric estimator. While
p always incorporates the dynamic structure contained in the original model, the nonparametric
kernel and bandwidth do not.
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An observation of ψnT (y) for this model can be generated using the algorithm

for i in 1 to n do
draw X from the distribution of X1 (which is given);
for t in 2 to T − 1 do

draw U ∼N(0� Ik);
set X ← μ(X)+ΣU ;

end
set Xi

T−1 ←X;
end
return ψnT (y) := 1

n

∑n

i=1p(X
i
T−1� y), where p is defined in (5).

Next let us consider approximating the stationary density ψ∞. Under the
conditions on p in Section 3, a unique stationary density exists, and the associ-
ated Markov process (Xt)t≥1 is ergodic in the sense that

lim
n→∞

1
n

n∑
t=1

h(Xt)=
∫
h(x)ψ∞(x)dx with probability 1(6)

for any initial X1 and any ψ∞-integrable function h.4 Ergodicity implies that
sample moments contain information aboutψ∞. Based on this intuition, Glynn
and Henderson (2001) proposed approximating ψ∞ via the stationary density
look ahead estimator (SDLAE)

ψn∞(y) := 1
n

n∑
t=1

p(Xt� y) (y ∈ X)�(7)

where (Xt)
n
t=1 is a time series simulated from p and arbitraryX1. Condition (6)

now implies that with probability 1,

lim
n→∞

ψn∞(y)= lim
n→∞

1
n

n∑
t=1

p(Xt� y)=
∫
p(x� y)ψ∞(x)dx�

In light of (2) this reads limψn∞(y) = ψ∞(y), and hence ψn∞(y) is consistent
for all y ∈ X, independent of the initial condition X1. Under some additional
mixing conditions, ψn∞(y) is also

√
n-consistent for ψ∞(y).

Returning to the model (4), with a growth restriction on μ (see below) the
model is ergodic with unique stationary density ψ∞. To approximate ψ∞(y)

4That is, any measurable h :X → R with
∫ |h(x)|ψ∞(x)dx <∞.
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using the SDLAE, one can apply the algorithm

set X1 ← x, where x is an arbitrary point in X;
for t in 1� � � � � n− 1 do // generate Xt+1 ∼ p(Xt� y)dy

draw U ∼N(0� Ik);
set Xt+1 ← μ(Xt)+ΣU ;

end
return ψn∞(y) := 1

n

∑n

t=1p(Xt� y), where p is defined in (5).

In this paper we extend Glynn and Henderson’s analysis of the look ahead
estimator, analyzing global convergence of ψnT to ψT and ψn∞ to ψ∞. Using a
Hilbert space CLT, we show that, when viewed as random functions, the devi-
ations ψnT − ψT and ψn∞ − ψ∞ are asymptotically normally distributed over a
certain function space and are

√
n-consistent in the sense that the norm devia-

tion is OP(n−1/2).

2. GLOBAL CONVERGENCE, MARGINAL DISTRIBUTION

First let us consider global convergence of ψnT to ψT . We use some facts
concerning probability in Hilbert space. In what follows, let H be a separable
Hilbert space with inner product 〈g�h〉 and norm ‖h‖H := 〈h�h〉1/2. If Y is a
random variable taking values in H and E‖Y‖H is finite, we can define EY ∈H
by the expression 〈EY�h〉 = E〈Y�h〉, all h ∈ H. This vector EY is called the
expectation of Y and is necessarily unique.5

The CLT extends from R
k to general H almost unchanged: If (Yn)n≥1 is in-

dependent and identically distributed (IID) and E‖Y1‖2
H is finite, then Ȳn :=

n−1
∑n

i=1Yi satisfies

√
n(Ȳn − EY1)

D→W (n→ ∞)�(8)

where the random variable W is centered Gaussian on H.6 A corollary of this
convergence in distribution is that ‖Ȳn − EY1‖H =OP(n−1/2).

The Hilbert space CLT can be used to study convergence of ψnT to ψT .
Let XT−1 be a random variable distributed according to ψT−1 and let Y :=
p(XT−1� ·) be the random function y �→ p(XT−1� y) from X to R. An immedi-
ate consequence of this definition is that if (Xi

T−1)
n
i=1 are IID copies of XT−1,

5By the Cauchy–Schwarz inequality, |E〈Y�h〉| ≤ E‖Y‖H‖h‖H, and since E‖Y‖H is finite, h �→
E〈Y�h〉 is a bounded linear functional on H. By the Riesz representation theorem, to such a
functional there corresponds a vector EY ∈ H satisfying 〈EY�h〉 = E〈Y�h〉, h ∈ H. This EY is
defined to be the expectation of Y . In the present context all standard notions of vector-valued
integration coincide (cf., e.g., Bosq (2000)).

6W is called centered Gaussian on H if, for every h ∈ H, the real-valued random variable
〈W�h〉 has Gaussian distribution N(0�σ2

h) on R for some σ2
h ≥ 0.



DISTRIBUTIONS OF ECONOMIC MODELS 447

then the sample mean

Ȳn := 1
n

n∑
i=1

Yi = 1
n

n∑
i=1

p(Xi
T−1� ·)(9)

is precisely ψnT . Our asymptotic normality proof applies the CLT in (8) to Ȳn =
ψnT in (9).

To employ the CLT in (8), three steps are necessary, the details of which are
deferred to the Appendix. The first step is to ensure that Y = p(XT−1� ·) does
in fact take values in a separable Hilbert space; in particular,

H =L2(X) :=
{

all measurable h : X → R s.t.
∫
h(x)2 dx <∞

}

with inner product 〈g�h〉 = ∫
gh. This is done by placing a restriction on p

in Theorem 1 below. The second step is to show that the moment condition
E‖Y‖2 <∞ is satisfied, where ‖ · ‖ is the norm on L2(X). The third step is to
show that the expectation EY of Y is ψT , in which case we have

√
n(Ȳn − EY)= √

n(ψnT −ψT)(10)

and the CLT in (8) can be applied:

THEOREM 1: Let (Xi
T−1)

n
i=1 be IID copies of XT−1 and let ψnT be the MDLAE.

If there exists a ψT−1-integrable function V : X → R such that∫
p(x� y)2 dy ≤ V (x) (x ∈ X)�(11)

then
√
n(ψnT −ψT) converges in distribution to a centered Gaussian random vari-

able W taking values in L2(X).7

As a consequence we obtain the rate ‖ψnT −ψT‖ =OP(n−1/2).

3. GLOBAL CONVERGENCE, STATIONARY DISTRIBUTION

Next we consider convergence of the SDLAE ψn∞ in (7) to ψ∞. As for
the case of local convergence (i.e., ψn∞(y)→ ψ∞(y) for fixed y), global con-
vergence of ψn∞ to ψ∞ requires a form of ergodicity. We suppose that p
is V -uniformly ergodic (V -UE); namely, there exists a measurable function
V : X → [1�∞) and positive constants α< 1 and R<∞ with

sup
|h|≤V

∣∣∣∣
∫
h(y)pt(x� y)dy −

∫
h(y)ψ∞(y)dy

∣∣∣∣ ≤ αtRV (x)

for all x ∈ X and all t ≥ 1. Here pt refers to the tth order kernel: pt(x� ·) is

7For example, if x �→ ∫
p(x� y)2 dy is bounded on X, then the conditions of the theorem are

always satisfied.
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the density of Xk+t when Xk = x.8 Thus,
∫
h(y)pt(x� y)dy is the expectation

of h(Xt+1) conditional on X1 = x.
V -UE implies that

∫
h(y)pt(x� y)dy converges geometrically to the expec-

tation of h with respect to the stationary distribution. It also implies total vari-
ation (and hence L1) convergence of pt(x� ·) to ψ∞, as well as uniqueness of
ψ∞ and ergodicity as in (6).9

The V -UE property is closely related to geometric ergodicity, and sufficient
conditions are well understood. For example, the model given by (4) and (5) is
V -UE whenever μ satisfies

∃a ∈ [0�1) and b ∈ R+ s.t. ‖μ(x)‖ ≤ a‖x‖ + b (x ∈ X)(12)

for some norm ‖ · ‖ on X. Kristensen (2006, Theorem 2) gave a useful set of
sufficient conditions for geometric ergodicity, which he applied to linear and
nonlinear autoregressive moving average, random coefficients and generalized
autoregressive conditional heteroskedasticity models. These conditions are, in
fact, sufficient for the V -UE property.

With some modifications, the Hilbert space CLT in (8) can be used to prove
asymptotic normality of the SDLAE. Let

L2(X�ψ∞)

:=
{

all measurable h : X → R s.t.
∫
h(x)2ψ∞(x)dx <∞

}
�

let 〈g�h〉ψ∞ = ∫
g(x)h(x)ψ∞(x)dx be the inner product on L2(X�ψ∞) and let

‖·‖ψ∞ denote the norm. Adding mild restrictions to p (see below), the densities
p(x� ·), ψn∞, and ψ∞ all take values in L2(X�ψ∞).

Now let (Xt)t≥1 be a time series generated by p and let Yt be the L2(X�ψ∞)-
valued random variablep(Xt� ·). It follows that the sample mean Ȳn is precisely
ψn∞. As discussed in the Appendix, if (Xt)t≥1 is stationary, then the expectation
EY1 = Ep(X1� ·) is equal to ψ∞, which yields

√
n(Ȳn − EY1)= √

n(ψn∞ −ψ∞)�(13)

The Hilbert space CLT in (8) does not immediately apply, as (Yt)t≥1 is now a
correlated process. However, it is known that for Hilbert-space-valued func-
tions of V -UE processes, the CLT continues to hold (Stachurski (2006)). This
gives the foundations of the following result:

8The kernels are defined by p1 = p and pt+1(x� y)= ∫
p(x�z)pt(z� y)dz.

9In addition, V -UE implies aperiodicity, irreducibility, and geometric mixing. Interested read-
ers should consult Meyn and Tweedie (1993, Chap. 16).
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THEOREM 2: Let (Xt)t≥1 be a Markov process on X with V -UE density kernel
p. If ∫

p(x� y)2ψ∞(y)dy ≤ V (x) (x ∈ X)�(14)

then
√
n(ψn∞ −ψ∞) converges in distribution to a centered Gaussian random vari-

able W on L2(X�ψ∞) with covariance function

Γ (y� y ′)=
∫
p(x� y)p(x� y ′)ψ∞(x)dx−ψ∞(y)ψ∞(y ′)

+
∞∑
t≥1

[∫
p(x� y)pt+1(x� y ′)ψ∞(x)dx−ψ∞(y)ψ∞(y ′)

]

+
∞∑
t≥1

[∫
p(x� y ′)pt+1(x� y)ψ∞(x)dx−ψ∞(y)ψ∞(y ′)

]
�

The covariance function Γ (y� y ′) can be viewed as the infinite dimensional
analogue of a variance–covariance matrix.10

From Theorem 2, we obtain the asymptotic distribution of the error, mea-
sured in terms of the norm distance between ψn∞ and ψ∞.

COROLLARY 1: Under the hypotheses of Theorem 2, we have

n‖ψn∞ −ψ∞‖2
ψ∞

D→
∞∑
�≥1

λ�Z
2
� (n→ ∞)�

where (λ�)�≥1 are the eigenvalues of the covariance function Γ in Theorem 2, and
(Z�)�≥1 are independent standard normal.11

Here n‖ψn∞ − ψ∞‖2
ψ∞ is the square of ‖√n(ψn∞ − ψ∞)‖ψ∞ , and Corollary 1

is an infinite dimensional version of the well-known fact that if Y ∼ N(0�C)
in R

k, then ‖Y‖2 has the same distribution as
∑k

�=1 λ�Z
2
� , where ‖ · ‖ is the

norm on R
k, λ� is the �th eigenvalue of C , and (Z�)k�=1 are IID andN(0�1). An

immediate consequence of Corollary 1 is global
√
n-consistency. In particular,

‖ψn∞ −ψ∞‖ψ∞ =OP(n−1/2).
A final remark on Theorem 2 is that if p is V -UE and bounded, then the

conclusion of the theorem holds without (14). For example, p in (5) satisfies
all the conditions of the theorem when (12) holds.

10Note that, in fact, we do not need X1 ∼ ψ∞. The result holds for X1 = x ∈ X, where x is ar-
bitrary. This is important for implementation. It means that when simulating (Xt)t≥1 to construct
ψn∞ one can start at any x ∈ X.

11More correctly, (λ�)�≥1 are the eigenvalues of the covariance operator C defined by the func-
tion Γ . For h ∈L2(X�ψ∞), Ch is given by Ch(y ′) := ∫

Γ (y� y ′)h(y)ψ∞(y)dy .
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APPENDIX

Regarding Theorem 1, to employ the CLT in (8), we must establish (i) that
Y = p(XT−1� ·) takes values L2(X), (ii) that E‖Y‖2 <∞, and (iii) that EY =
ψT . In fact, (i) is immediate from (11), as is (ii) because

‖Y‖2 =
∫
p(XT−1� y)

2 dy ≤ V (XT−1)

and EV (XT−1) is finite by assumption. To prove (iii) we must show that
〈ψT�h〉 = E〈Y�h〉 for any h ∈ L2(X). Since ψT(y)= Ep(XT−1� y), for such an
h we have

〈ψT�h〉 :=
∫
ψT(y)h(y)dy =

∫
Ep(XT−1� y)h(y)dy�

On the other hand, an application of Fubini’s theorem gives

E〈Y�h〉 = E

∫
p(XT−1� y)h(y)dy =

∫
Ep(XT−1� y)h(y)dy�

Hence 〈ψT�h〉 = E〈Y�h〉 for all h ∈L2(X) and EY =ψT as claimed.
Regarding Theorem 2, the fact that EY1 = Ep(X1� ·) = ψ∞ when (Xt)t≥1 is

stationary (and hence X1 ∼ ψ∞) can be proved in an almost identical manner
to the proof of (iii) above. The sufficiency of (14) and the expression for Γ
follow directly from Stachurski (2006, Theorem 3.1).
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